Epidemiology of thyroid cancer in Czech population after the Chernobyl accident

V. Sykorova¹, J. Grundloch², T. Halkova¹, E. Vaclavikova¹, S. Dvorakova¹, P. Vlcek³, B. Bendlova¹

¹Dept. of Molecular Endocrinology, Institute of Endocrinology, Prague; ²Czech Geological Survey, Prague; ³Department of Nuclear Medicine and Endocrinology, 2nd Faculty of Medicine, Charles University, Prague; Czech Republic
Incidence of thyroid cancer

- the most common type of endocrine malignancy
- increase over last decades, mainly PTC

Causes of increasing incidence:
- improvement of diagnosis, microcarcinoma
- changes in diagnostic criteria
- iodine over-supply
Chernobyl accident

- 26 April, 1986, Ukraine
- 2×10^{18} Bq of iodine-131 (half-life is 8 days)
- increasing of PTC incidence in children
- effect on development of PTC in adults?
Chernobyl accident

Peterka et al., 2004
Chernobyl accident in Czech Republic

I
- 1: 30. 4. 86 – 2 h
- 2: 30. 4. 86 – 14 h

II
- from 4. 5. 86 – 2 h
to 5. 5. 86 – 14 h

III
- 1: from 8. 5. 86 – 2 h
to 9. 5. 86 – 2 h
- 2: from 7. 5. 86 – 2 h
to 7. 5. 86 – 14 h
- 3: 8. 5. 86 – 2 h

Kuchtova 2006
Levels of radioactivity in CR

Atmospheric aerosol:
- from the maximum value - about 257 Bq/m³ (April 30) – to 7 Bq/m³ (May 7)
- tellurium (Te132), iodine (I131), ruthenium (Ru103) and caesium (Cs137, Cs134)

Whole body radioactivity:
- started in May 4, 1986
- from April 30 to May 3 has been estimated to be 9000 Bq/s

Peterka et al. 2003
Precipitation (30 April – 5 May, 1986)
137Cs distribution in 1986

Kunz 1987 (modified)
Although the Czech Republic received only a relatively moderate amount of radioactive fallout, an unexpected uniformly accelerated increase of thyroid cancer in all age categories is seen from 1990 onwards.

S. Mürbeth

• 1976 – 1999
• 7,444 thyroid carcinoma patients
Aim of study

Evaluation of possible effect of radioactive fallout after Chernobyl accident on the incidence of thyroid cancer in the Czech regions using GIS
GIS

- Geographic information system
- a system designed to capture, store, manipulate, analyze, manage, and present all types of geographical data
- merges of cartography, statistical analysis, and database technology
- perspective tool for interdisciplinary studies including epidemiology
Czech Cancer Registry administrated by the Institute of Health Information and Statistics (IHIS) of the Czech Republic

- **14,676** thyroid cancer of Czech patients diagnosed from 1977 to 2009 (1:3.5 males vs females) with basic clinical and pathological data
- **7,587** PTC patients
- 206 regions of the Czech Republic (cca 15,000 inhabitants per region)
Prevalence of all thyroid carcinomas
Prevalence of thyroid ca 1977 - 1985
Prevalence of thyroid ca 1986 – 2009

PREVALENCE_100000
- 26.3 - 81.4
- 81.5 - 107.4
- 107.5 - 133.3
- 133.4 - 167.8
- 167.9 - 237.0

2nd Pannonia Congress of Pathology, Siófok, Hungary

17-19 May, 2012
Prevalence 1986 – 2009 vs 137Cs levels
Prevalence of all PTC
Prevalence of PTC 1977 - 1985
Prevalence of PTC 1986 – 2009
Prevalence of PTC 1986 – 2009 vs 137Cs
Conclusions

- Our pilot study did not confirm a direct effect of Chernobyl on prevalence of thyroid cancer, but geographic differences before and after Chernobyl were apparent.

- Effect of the other possible pathological factors (such as natural radiation, air pollution etc.) will be studied.

- The more detailed analysis of clinical-pathological data is planned.
Acknowledgement

Czech Geological Survey, Prague
 J. Grundloch

Institute of Endocrinology, Prague
 Š. Dvořáková, Ph.D.
 E. Václavíková
 Tereza Hálková
 Assoc. Prof. B. Bendlova, Ph.D.

Department of Nuclear Medicine and Endocrinology, 2nd Faculty of Medicine and Faculty Hospital Motol, Prague
 Assoc. Prof. MUDr. P. Vlček, CSc.

Supported by IGA MH CR NR/9165-3, NT/13901-4 and project CZ.2.17/1.1.00/32386
Thank you for your attention
Factors in the development of DTC

Landa I, Robledo M J Mol Endocrinol 2011;47:R43-R58
Regions of Czech Republic
Chernobyl and thyroid cancer

<table>
<thead>
<tr>
<th>Mutation</th>
<th>RETPTC3</th>
<th>RETPTC1</th>
<th>BRAF, RAS, PAX8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour</td>
<td>Pap Ca</td>
<td>Pap Ca</td>
<td>? Pap Ca *Foll Ca</td>
</tr>
<tr>
<td>Morphology</td>
<td>Solid variant</td>
<td>Classical</td>
<td>? Encapsulated</td>
</tr>
<tr>
<td>Clinical</td>
<td>Aggressive</td>
<td>Typical</td>
<td>? ‘benign’/typical</td>
</tr>
<tr>
<td>Latency</td>
<td>4–10 years</td>
<td>7–17 years</td>
<td>? 15–</td>
</tr>
</tbody>
</table>

Estimated, (start-peak)
Incidence of thyroid cancer in CR

C73 - Malignant neoplasm of thyroid gland

Time trend

1986

Source of data: UZIS CR

Analysed data: N(inc)=13756, N(mor)=3224

http://www.svod.cz
Loss of male fetuses after Chernobyl

Peterka et al. 2003

Peterka et al. 2003