Thyroid follicular neoplasms in cytology

Ulrika Klopčič
Institute of Oncology, Department of Cytopathology, Ljubljana, Slovenia
Lecture overview

• importance of FNAB in assessing thyroid lesions
• follicular thyroid neoplasms
• other follicular-patterned thyroid lesions in cytology and difficulties in their differentiation
• how is The Bethesda system for reporting thyroid cytopathology (TBSRTC) dealing with follicular-patterned lesions
• the role of ancillary techniques
Importance of FNAB in assessing thyroid lesions

- palpable thyroid nodule in 4-10% of the population
- US detected thyroid nodule in up to 27% of the population
- majority benign (app. 1% malignant)
- FNAB is most accurate and cost effective method for triage and management of the patients with thyroid nodules (diagnostic accuracy from 80 to > 95% for representative samples)
- FNAB could be diagnostic (papillary, medullary carcinoma,...) or screening test (follicular carcinoma)
Follicular neoplasms

• include: - follicular adenoma (FA)
 - follicular carcinoma (FC)
• diagnosis of FC based strictly on histological criteria (vascular/capsular invasion)
Follicular adenoma (FA)

• encapsulated benign neoplasm
• several different histomorphologic growth patterns (usually uniform architecture in a single lesion)
• morphologic diversity is the cause for overlapping cytologic patterns in some cases of nodular goiter, follicular adenoma and follicular carcinoma
Morphologic variants of FA

- conventional:
 - macrofollicular (colloid)
 - normofollicular (simple)
 - microfollicular
 - trabecular/solid
- oncocytic
- hyalinizing trabecular
- FA with clear cell change
- FA with papillary hyperplasia
- atypical
Microfollicular growth pattern

• architecture
 - syncytial tissue fragments (mostly follicular pattern)

• follicular cells characteristics:
 - uniformly enlarged nuclei
 - fine to coarsely granular chromatin, no nucleoli

• background:
 - scant to absent colloid

DD: well differentiated follicular carcinoma
Trabecular/solid growth pattern

• architecture
 - syncytial tissue fragments with mostly trabecular pattern
 - crowding & overlapping of nuclei
• follicular cells characteristics:
 - variably enlarged, sometimes pleomorphic nuclei
 - fine to coarsely granular chromatin, no nucleoli
• background:
 - scant to absent colloid

DD: well differentiated follicular carcinoma
Macrofollicular (colloid) growth pattern

• architecture
 - regular follicles
 - monolayered sheets with honeycomb pattern
• follicular cells characteristics:
 - small picnotic nuclei
• background:
 - abundant colloid
 - bare nuclei of follicular cells

DD: nodular goiter
Normofollicular growth pattern

• **architecture**
 - syncytial tissue fragments
 - regular follicles
 - monolayered sheets with honeycomb pattern

• **follicular cells characteristics:**
 - normal sized or slightly enlarged nuclei
 - granular, evenly distributed chromatin, no nucleoli

• **background:**
 - variable amount of colloid

DD: nodular goiter
Follicular carcinoma

- presence of capsular or vascular invasion essential for the diagnosis of FC
- different morphologic patterns
- poorly differentiated FC pose no diagnostic problem
- well differentiated FC has overlapping morphologic features with FA
Well differentiated FC

• architecture
 - syncytial tissue fragments with or without follicular pattern
 - crowding & overlapping of nuclei
 - irregular follicles
• follicular cells characteristics:
 - enlarged, round to oval, uniform or pleomorphic nuclei
 - fine to coarsely granular chromatin, micro and macro nucleoli
 - more cytoplasm than cells of FA, poorly defined cell borders
• background:
 - clean, scant or absent colloid

DD: follicular adenoma, FVPC
Poorly differentiated FC

- **architecture**
 - syncytial tissue fragments of malignant cells with or without follicular pattern, solid areas
 - crowding & overlapping of nuclei

- **follicular cells characteristics:**
 - larger than in WDFC, pleomorphic
 - large round nuclei, coarsely granular chromatin, parachromatin clearing, nucleoli
 - pale to dense cytoplasm

- **background:**
 - absent colloid, sometimes necrosis
Follicular patterned thyroid lesions

- the most common type of thyroid FNA specimens
- lesions with follicular pattern:
 - neoplasms:
 - follicular adenoma
 - follicular carcinoma
 - follicular variant of papillary carcinoma
 - non-neoplastic lesions:
 - nodular goiter (nodular hyperplasia)
Follicular variant of papillary carcinoma

- **architecture:**
 - syncytial tissue fragments
 - microfollicles
- **follicular cells characteristics:**
 - enlarged nuclei
 - pale chromatin
 - micronucleoli
 - nuclear grooves & pseudoinclusions
- **background:**
 - dense colloid
 - multinucleated giant cells
Nodular goiter (nodular hyperplasia)

- **architecture:**
 - monolayerd tissue fragments with honeycomb pattern
 - regular follicles
 - pseudopapillary tissue fragments
 - single cells

- **follicular cells characteristics:**
 - small round uniform nuclei
 - compact to finely granular chromatin

- **background:**
 - colloid (variable amount, even absent)
Morphological features that can help in the differentiation of follicular lesions

• amount of colloid
• architectural pattern of tissue fragments
• size and shape of follicular cell nuclei
• changes in chromatin pattern
The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC)

Recommended diagnostic categories:
• nondiagnostic or nonsatisfactory
• benign
• atypia of undetermined significance or follicular lesion of undetermined significance
• follicular neoplasm or suspicious for follicular neoplasm
• suspicious for malignancy
• malignant
The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC)

Advantages:
- standardisation of cytology reports
- each diagnostic category carries the information of:
 - malignancy risk
 - recommended clinical management
- facilitates communication among cytopathologists and clinicians
- facilitates cytologic-histologic correlation
Ancillary techniques in evaluating follicular lesions

- Not very useful:
 - immunohistochemistry:
 HBME-1, CD 57, Lactoferrin (malignant vs benign thyroid neoplasms)
 - DNA ploidy

- Promising:
 - molecular techniques:
 - for detecting somatic mutations (RAS mutations, PAX8/PPARG1 rearrangement)
 - for gene expression profiling (microarrays)
Conclusions

• Follicular thyroid lesions are difficult to evaluate from cytology samples because of variety of their morphological pictures which sometimes overlap between several entities.

• TBSRTC enables the standardisation of the thyroid cytology reports, which facilitates the communication between cytologist and referral physician and improve patients care.

• Cytology will remain a screening and not a diagnostic test for follicular carcinoma until ancillary techniques will be developed that would enable the differentiation between benign thyroid nodules and FC.