What is the optimal design of a rocker shoe

University of Salford
School of Health, Sport and Rehabilitation Sciences
Deutsche Sporthochschule Köln

J Chapman, S Preece, C Nester, B Braunstein, P Bruggerman
The SSHOES Project

Aims of Project: Develop new production capabilities for diabetic feet, specifically for personalisation of footwear.

Consortium: 11 EU partners, including 5 R&D institutions and 6 SMEs

Funding: FP7, €3.5 million

Specific topics addressed include:

- Innovative 3D integrated design tools for footwear personalisation
- Musculoskeletal modelling of the lower limb and feet
- Adaptive production technologies for improved functionality & performance
- Development of innovative high-performing materials
- Development of production processes to achieve eco sustainability
The toe-only curved rocker shoe

- Most effective shoe for minimising pressure
- Has 3 principle design features
- Can be adjusted for optimal performance

1. Apex Position
2. Rocker Angle
3. Apex Angle
Previous research

- Not one combination has been proven to work on everyone

- Varied
 - Apex Position
 - Rocker Angle via heel height

- Key finding
 - Need individual apex position for best off loading
 - Increase in rocker angle reduced pressure
 - Suggests need for bespoke footwear

- Limitations
 - Used a traditional rocker shoe
 - Collected data on healthy subjects not diabetic
 - Only evaluated 2 of 3 principle design features
Aims and Methods

• Aims
 1. Evaluate the mean effect of the 3 principle design features on in-shoe pressure in (30) diabetic and (30) healthy subjects.
 2. Quantify inter subject variability
 3. Establish whether there is any difference in the response of the diabetic and the healthy cohort

• Methods
 • Subjects to walk in the 12 rocker and 1 control shoe over ground at controlled speed 1 ms\(^{-1}\) whilst in shoe pressure was recorded.
 • In shoe pressure was recorded using Novel Pedar
 • Footscan used to express design features in an anatomical coordinate system
 • Mean peak pressure under 1\(^{st}\) MTH calculated for each shoe using custom software in Matlab
Specifications of footwear

<table>
<thead>
<tr>
<th>Shoe</th>
<th>Rocker angle (RA)</th>
<th>Apex position (AP)</th>
<th>Apex angle (AA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (control)</td>
<td>(Heel height)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 (reference*)</td>
<td>20º (3 cm)</td>
<td>60%</td>
<td>+80º</td>
</tr>
<tr>
<td>3 (RA1)</td>
<td>10º (1 cm)</td>
<td>60%</td>
<td>+80º</td>
</tr>
<tr>
<td>4 (RA2)</td>
<td>15º (2 cm)</td>
<td>60%</td>
<td>+80º</td>
</tr>
<tr>
<td>5 (RA4)</td>
<td>25º (4 cm)</td>
<td>60%</td>
<td>+80º</td>
</tr>
<tr>
<td>6 (RA5)</td>
<td>30º (5 cm)</td>
<td>60%</td>
<td>+80º</td>
</tr>
<tr>
<td>7 (AP1)</td>
<td>20º (3 cm)</td>
<td>50%</td>
<td>+80º</td>
</tr>
<tr>
<td>8 (AP2)</td>
<td>20º (3 cm)</td>
<td>55%</td>
<td>+80º</td>
</tr>
<tr>
<td>9 (AP4)</td>
<td>20º (3 cm)</td>
<td>65%</td>
<td>+80º</td>
</tr>
<tr>
<td>10 (AP5)</td>
<td>20º (3 cm)</td>
<td>70%</td>
<td>+80º</td>
</tr>
<tr>
<td>11 (AA1)</td>
<td>20º (3 cm)</td>
<td>60%</td>
<td>70º</td>
</tr>
<tr>
<td>12 (AA2)</td>
<td>20º (3 cm)</td>
<td>60%</td>
<td>90º</td>
</tr>
<tr>
<td>13 (AA4)</td>
<td>20º (3 cm)</td>
<td>60%</td>
<td>100º</td>
</tr>
</tbody>
</table>
Results – Mean effect of design features

- Observed a decrease in pressure as apex angle increased:

- No consistent change in pressure with change in apex position:

- Observed a decrease in pressure as rocker angle increased:

\[\alpha = 0.001 \text{ (Bonferroni adjustment)} \]
Results - Quantifying inter subject variability

- Individual responses Apex angle in relation to shoe

Mean/std 95.00 ±4.8
Results - Quantifying inter subject variability

- Individual responses Apex angle

In a foot coordinate system, there is an optimal apex consistent optimum of 20° to metatarsal angle.
Results - Quantifying inter-subject variability

- Individual responses Apex position in relation

Mean/std 57.8 ±5.2
Results - Quantifying inter-subject variability

- Individual responses Apex position

- In a foot/shoe coordinate system, there is still no optimal apex position.

\[
\text{Mean/std} \quad -27.56 \pm 26.2
\]
Results cont

- Individual responses Rocker angle

Mean/std 24.4 ±5.3

- In general the lower rocker angles do not perform as well as the higher angles.
- No clear optimal rocker angle
Results - Diabetic/Healthy comparison

- Same mean trend between populations
- Both diabetic and healthy population showed same AA finding
- No significant differences for AP and AR for the diabetic population due to increased inter-subject variability (larger error bars).
Conclusions and design recommendation for rocker shoes

- For optimal pressure relief under 1st MTH
 - Apex Angle should be orientated 20° to the metatarsal angle

- Apex Position needs to be individually adjusted but 70% of shoe length tends to lead to high pressures.

- Rocker Angle needs to be individually adjusted but improved pressure offloading is obtained at higher angles
Salford’s role in the SSHOES Project

- Research design characteristics of rockers shoes & develop system for producing bespoke designs
- Two Phase experiment: Phase 1
 - Collect data on foot shape
 - Establish the effect of 3 design characteristics on plantar pressure
- Phase 2:
 - Collect data on barefoot walking characteristics
 - Collect data on plantar pressure in different shoes
 - Develop algorithm to link best shoe with walking pattern

Assessment of walking biomechanics & clinical status
(Using a mini gait lab)

Input gait data into algorithm
Select footwear features to minimise pressure

Shoe Prescription
References

Other regions of the foot

- All subjects 2nd-4th MTH
 - Right side

- All subjects 5th MTH
 - Right side

- All subjects Halux
 - Right side

- All subjects Heel
 - Right side