What is the optimal design of a rocker shoe

University of Salford

School of Health, Sport and Rehabilitation Sciences

Deutsche Sporthochschule Köln

J Chapman, S Preece, C Nester, B Braunstein, P Bruggerman

The SSHOES Project

Aims of Project: Develop new production capabilities for diabetic feet, specifically for personalisation of footwear.

Consortium: 11 EU partners, including 5 R&D institutions and 6 SMEs

Funding: FP7, €3.5 million

Specific topics addressed include :

- Innovative 3D integrated design tools for footwear personalisation
- Musculoskeletal modelling of the lower limb and feet
- Adaptive production technologies for improved functionality & performance
- Development of innovative high-performing materials
- Development of production processes to achieve eco sustainability

Previous research

• Not one combination has been proven to work on everyone

van Schie, C., J. S. Ulbrecht, et al. (2000). "Design criteria for rigid rocker shoes." <u>Foot &</u> <u>Ankle International</u> 21(10): 833-844.

- Varied
 - Apex Position
 - Rocker Angle via heel height
- Key finding
 - Need individual apex position for best off loading
 - Increase in rocker angle reduced pressure
 - Suggests need for bespoke footwear
- Limitations
 - Used a traditional rocker shoe
 - Collected data on healthy subjects not diabetic
 - Only evaluated 2 of 3 principle design features

Aims and Methods

• Aims

- 1. Evaluate the mean effect of the 3 principle design features on in-shoe pressure in (30) diabetic and (30) healthy subjects.
- 2. Quantify inter subject variability
- 3. Establish whether there is any difference in the response of the diabetic and the healthy cohort

Methods

- Subjects to walk in the 12 rocker and 1 control shoe over ground at controlled speed 1 ms⁻¹ whilst in shoe pressure was recorded.
- In shoe pressure was recorded using Novel Pedar
- Footscan used to express design features in an anatomical coordinate system
- Mean peak pressure under 1st MTH calculated for each shoe using custom software in Matlab

Specifications of footwear

Shoe	Rocker angle (RA)	Apex position (AP)	Apex angle (AA)
1 (control)	(Heel height)	-	-
2 (reference*)	20º (3 cm)	60%	+80°
3 (RA1)	10º (1 cm)	60%	+80°
4 (RA2)	15º (2 cm)	60%	+80°
5 (RA4)	25º (4 cm)	60%	+80°
6 (RA5)	30º (5 cm)	60%	+80°
7(AP1)	20º (3 cm)	50%	+80°
8 (AP2)	20º (3 cm)	55%	+80°
9 (AP4)	20º (3 cm)	65%	+80°
10 (AP5)	20º (3 cm)	70%	+80°
11 (AA1)	20º (3 cm)	60%	70 °
12 (AA2)	20º (3 cm)	60%	90°
13 (AA4)	20º (3 cm)	60%	100°

Results - Quantifying inter subject variability

• Individual responses Apex angle in relation to shoe

S)SHOES

Results - Quantifying inter subject variability

• Individual responses Apex angle

0.25

0.2

-10

0

20

30

10

In a foot coordinate system, there is an optimal apex consistent optimum of 20° to metatarsal angle

θ

- Same mean trend between populations
- Both diabetic and healthy population showed same AA finding
- No significant differences for AP and AR for the diabetic population due to increased inter-subject variability (larger error bars).

Conclusions and design recommendation for rocker shoes

- For optimal pressure relief under 1st MTH
 - Apex Angle should be orientated 20° to the metatarsal angle

• Apex Position needs to be individually adjusted but 70% of shoe length tends to lead to high pressures.

• Rocker Angle needs to be individually adjusted but improved pressure offloading is obtained at higher angles

Salford's role in the SSHOES Project

- Research design characteristics of rockers shoes & develop system for producing bespoke designs
- Two Phase experiment: Phase 1
 - Collect data on foot shape
 - Establish the effect of 3 design characteristics on plantar pressure
- Phase 2:
 - Collect data on barefoot walking characteristics
 - Collect data on plantar pressure in different shoes
 - Develop algorithm to link best shoe with walking pattern

Assessment of walking biomechanics & clinical status

(Using a mini gait lab)

Input gait data into algorithm Select footwear features to minimise pressure

References

- Armstrong, D.G., et al., Is there a critical level of plantar foot pressure to identify patients at risk for neuropathic foot ulceration? J Foot Ankle Surg, 1998. **37**(4): p. 303-7.
- Bauman, J.H., J.P. Girling, and P.W. Brand, *Plantar Pressures and Trophic Ulceration. An Evaluation of Footwear.* J Bone Joint Surg Br, 1963. **45**: p. 652-73.
- Janisse, D.J., Prescription insoles and footwear. Clin Podiatr Med Surg, 1995. 12(1): p. 41-61.
- Nawoczenski, D.A., J.A. Birke, and W.C. Coleman, *Effect of rocker sole design on plantar forefoot pressures*. J Am Podiatr Med Assoc, 1988. **78**(9): p. 455-60.
- Brown, D., et al., *Effect of rocker soles on plantar pressures*. Archives of Physical Medicine and Rehabilitation, 2004. **85**(1): p. 81-86.
- Bus, S.A., et al., *Plantar pressure relief in the diabetic foot using forefoot offloading shoes.* Gait Posture, 2009. **29**(4): p. 618-22.
- Fuller, E., S. Schroeder, and J. Edwards, *Reduction of peak pressure on the forefoot with a rigid rocker-bottom postoperative shoe*. Journal of the American Podiatric Medical Association, 2001. **91**(10): p. 501-507.
- Schaff, P.S. and P.R. Cavanagh, Shoes for the insensitive foot: the effect of a "rocker bottom" shoe modification on plantar pressure distribution. Foot Ankle, 1990. 11(3): p. 129-40.
- Praet, S.F. and J.W. Louwerens, *The influence of shoe design on plantar pressures in neuropathic feet*. Diabetes Care, 2003. **26**(2): p. 441-5.
- van Schie, C., et al., *Design criteria for rigid rocker shoes*. Foot & Ankle International, 2000. **21**(10): p. 833-844.
- Tan, L.S., *The clinical use of the 10 g monofilament and its limitations: A review.* Diabetes Research and Clinical Practice. **90**(1): p. 1-7.
- Putti, A.B., et al., *The Pedar in-shoe system: repeatability and normal pressure values.* Gait Posture, 2007. **25**(3): p. 401-5.

