

SPECIAL SHOES MOVEMENT

ISPO 6TH CENTRAL EUROPEAN REGIONAL CONFERENCE

25-27 AUGUST 2011

NYÍREGYHÁZA, HUNGARY

A new non contact position sensor to track marks hidden by the shoe

Dr. Enrique Montiel, INESCOP, Spain.

SSHOES

EUROPEAN COMMISSION

SPECIAL SHOES MOVEMENT

Grant Agreement NMP2-SE-2009-229261

NMP-2008-4.0-7 Integration of new technologies and materials for differentiated consumer-centred product capability

- Project acronym: SSHOES
- Full title of project: **SPECIAL SHOES MOVEMENT**
- G.A. Ref.: NMP2-SE-2009-229261
- Start Date: 1st July 2009
- Duration: 36 months
- Total Budget: 4,874.025€
- EU Contribution: **3,509.000**€
- No. of Partners: 11
- Website: <u>www.sshoes.eu</u>

MAGNETIC TRIANGULATION BASED POSITION SENSOR

EUROPEAN COMMISSION

PROBLEM TO SOLVE

- How to determine foot-footwear relative position in hidden zones?
- Opening windows in the shoe: destructive biomechanical studies
 - May influence footwear functionality.
- X Ray, MR:

- Cost, complex
- Time scale low
- X Ray inherent problems
- Solution: Position sensor based in magnetic triangulation.
 - This new patented technology may support knowleddge on positionj in hidden zones. Non intrusive, non destructive.

PROBLEM TO SOLVE

The aim of this activity was the development of a piece of hardware able to measure the relative position between a small marker, that could be placed anywhere on the foot, and a sensor that would be attached outside the shoe.

The prototype should be able to:

Provide 3D coordinates of a marker placed on the foot with regards to a sensor placed on marker, but outside the shoe.

Be synchronised with other measuring systems, especially motion capture systems and video.

Description

•System based on fingerprint capture of a small magnet.

•Magnetic lines going throw footwear.

•Reconstruction algorythm: from magnetic

fingerprint, real position is determined.

•Aplication in : 20x20x10 mm

•Resolution +-0,5mm

•Density 27 points/mm3 and total volume of

20x20x10mm.

•Plane paralelism plano magnet-sensor until 10°

•Ferromagnetic materials may interfere.

Steps 20 s every 100 ms

Balance test

Signal synchronised with video

Alternating weight from one foot to the other by moving the body from one side to another, walking on the treadmill

Capture on a treadmill with the sensor located on the shoe instep and the magnet attached to the in the foot instep, on the skin.

EUROPEAN COMMISSION

Instep sensor

Conclusion

- Technology based in Hall sensors which reconstructs relative position between a magnet and a sensor composed by three detectors.
- Posibility to develop sensors to a size of 2x2cm
- Sampling rate40/seg

THANKS FOR YOUR ATTENTION

emontiel@inescop.es

